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The nonlinear stability of a weakly supercritical shear flow with vertical temperature 
(density) stratification is investigated. It is shown that the usual Lin’s rule of 
‘indenting’ a singularity at the point of wave-flow resonance (the so-called critical 
layer, CL) is inapplicable for evaluating the nonlinear effects. To this end, a consistent 
procedure for deriving a nonlinear evolution equation is suggested and realized for 
the viscous critical-layer regime. The procedure takes into account the interaction 
of the fundamental harmonic with the second harmonic as well as with the zeroth 
one (i.e. with the mean-flow distortion). It is shown that the nonlinear factors both 
act in the same manner - at Prandtl number 7 < 1 they limit the instability but at 
7 > 1 they enhance it and convey a ‘burst-like’ character to it. 

It is found that CL is the region of strongest interactions between the harmonics. 
Hence the nonlinear contribution does not actually depend on the type of original 
flow model chosen. A simple physical interpretation is given to illustrate the 
mechanism governing the nonlinearity effects on the stability in the viscous critical- 
layer regime. 

1. Introduction 
The instability of shear flows is extensively invoked for explaining various 

phenomena in hydrodynamics, the physics of the atmosphere and ocean, geophysics, 
and so on. A linear stability theory for such flows in a uniform (Lin 1955) as well 
as a stratified fluid (Drazin & Howard 1966; Gossard & Hooke 1975) has, in general, 
now been constructed. One of the central concepts underlying this theory is that of 
critical layers (CL), i.e. the neighbourhoods of the surfaces y = ye, where the phase 
velocity c of a neutral perturbation coincides with the flow velocity u, = u(y). 
Depending on which of the three scales 

is largest - the unsteady l t ,  the viscous 1, or the nonlinear 1, - the CL may be one 
of three types: unsteady, viscous or nonlinear. Here ui = u’(y,), d is the width of a 
shear flow, k and A are respectively the wavenumber and the dimensionless amplitude 
of the perturbation, y = IA-’dA/dtl, v is the inverse of the Reynolds number, and 
t Q p Q depending on the Richardson number. 

Formally, the difference in the properties of the CL is as follows. The eigenfunction 
$ describing a neutrally stable solution for inviscid linearized equations, when 
y = ye, exhibits a branching point, and the question immediately arises as to how 
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to pass from the right-hand side of the CL (y- y, > 0) to its left-hand side (y- y, < 0). 
It appears that the general rule is thus: on the left-hand side of the CL 
$(y-yc) = @*(Iy- ycl ei$), where is an analytic continuation of the @ defined for 
y-y, > 0. In the case of an unsteady and viscous CL 9 = - A ,  i.e. ‘indentation’ is 
accomplished in a complex plane from below. This is Lin’s rule (here and in what 
follows we assume ui > 0). For a nonlinear CL, 4 = 0 (Benney & Bergeron 1969; 
Davis 1969). This is one aspect of the so-called ‘indentation’ rule. Another aspect 
involves the problem of evaluating the diverging integrals appearing in the solvability 
conditions. As long as we use the linearized equations outside a CL, these aspects are 
both virtually indistinguishable : the integrals must be evaluated through indentation 
of the contour from below the singularity in the case of an unsteady or viscous CL, 
but in the sense of its principal value in the case of a nonlinear CL. Such is not the 
case, however, in nonlinear theory. 

In  order to avoid confusion in the terminology, we need to emphasize that one must 
distinguish between the linear or nonlinear type of CL and the linearity or 
nonlinearity of the problem. In speaking about the nonlinear problem we imply 
taking into account the nonlinear self-action (generation of harmonics and their 
back-reaction on the perturbation) which leads to the nonlinear evolution equation. 
In this case the nonlinearity may be the inner as well as the outer one (Ostrovsky, 
Stepanyants & Tsimring 1983). When the nonlinearity is the inner one the main 
contribution to the nonlinear interaction is due to the CL region, otherwise the role 
of the CL in the nonlinear interaction is not a dominant one, however, and 
contributions from all regions of the flow are of equal importance. Further, when we 
are treating the CL type, we imply the linear or nonlinear form of the equation inside 
the CL, or, in other words, the linear (viscous or unsteady) or nonlinear method of 
singularity regularization. Thus, one can consider the nonlinear CL in problems that 
are, in fact, linear. This approach has been used by, for example, Benney & Bergeron 
(1969) and Maslowe (1973) in their search for a new class of linear neutral modes for 
which the phase jump 4 = 0 (rather than 9 = --K as in the ‘old’ linear theory). The 
problem concerning the outer nonlinearity and a viscous CL for a non-stratified flow 
was considered by Schade (1964), Benney 8z Maslowe (1975), Maslowe (1977a) and by 
Huerre (1977, 1980). 

In  problems regarding the nonlinear evolution, the CL regime plays the crucial role. 
However, as we shall demonstrate, there is no definite rule for evaluating the 
divergent integrals in this case and each particular problem requires careful analysis 
of the solution inside the CL. 

We shall consider the nonlinear perturbation evolution in a weakly supercritical, 
stratified shear flow with a viscous CL (for such a flow, it appears more justified to 
refer to the CL as a dissipative one because the thermometric conductivity K ,  together 
with viscosity u, plays an equal role if the Prandtl number 7 = U / K  - O(1); if, 
however, 7 %- 1, the thermoconductive CL will be placed inside the viscous one). The 
case of a stratified flow has two advantages over the uniform case. First, the stable 
stratification when the supercriticality is weak, A J  = a- J + 1 (J is the Richardson 
number), leaves on the (kz, kz)-plane a small unstable region near k, = (k,, 0) 
(k,d - 1, Ik-k,l d - (AJ) f )  and the increments of the perturbations are small. Here 
the two-dimensional formulation of the problem in the context of a weakly nonlinear 
theory is a natural one, in contrast to the uniform case including a wide range of 
unstable k, while investigation of a single, weakly unstable wave does not provide 
any insights into the fate of the system as a whole. Secondly, in a stratified flow, there 
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FIGURE 1.  Diagram of different regimes of the critical layer. The dotted curve inside region I 
represents the saturation amplitude at Prandtl number 7 < 1. 

exists a range of parameters in which the nonlinear evolution proceeds faster than 
the viscous spreading of the original flow so that this latter may be neglected (see 
also Brown, Rosen & Maslowe 1981 ; hereinafter referred to as Paper 1) .  In  a uniform 
flow, however, in the viscous CL regime (A 4 vi) the nonlinear time, in contrast, is 
very long and it is, therefore, appropriate to take into account the nonlinear effects 
only when an artificial force field keeping the original flow from viscous spreading 
is introduced. Huerre (1980) was the first to pay attention to this point. 

Thus, a stratified flow permits a fully correct formulation of the nonlinear evolution 
problem in the viscous CL regime. 

The linear theory of stratified flows with large Reynolds numbers (v = Re-’ 4 1)  
has been intensively developed since the beginning of the 1960s (Miles 1961 ; Drazin 
& Howard 1966), and a number of interesting results have recently been obtained 
(Ostrovsky et al. 1983; Makov & Stepanyants 1984). A stationary, nonlinear CL in 
such flows was considered by Kelley & Maslowe (1970) and Maslowe (1972, 1973). 

Returning now to the nonlinear problem, we first outline the ranges of parameters 
where the various CL regimes take place. Since at weak supercriticality the linear 
increment y - AJ and the p in (1.1) is equal to $, then I ,  - AJ, I ,  - d,  and I N  - At. 
Figure 1 is a diagram of the various CL regimes on the amplitude-supercriticality 
plane at  a fixed Reynolds number. In  region I, the CL is viscous; here 2,B max ( I t ,  I N )  ; 
and in region 11, the CL is nonlinear: 1 ,  B max ( I , ,  I ” ) ;  region I11 corresponds to an 
unsteady CL: I, & max (l, ,  I N ) .  In this work we shall restrict our attention to the 
nonlinear evolution of an initially small perturbation in the viscous CL regime, i.e. in 
region I of the parameters 

Here the middle inequality excludes the domain AJ 4 v where the viscous spreading 
of the original flow proceeds faster than the perturbation grows. 

The analogous problem has been considered by a number of authors (Maslowe 

A* 4 v . g ~ ~ +  v:. 
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1977b; Paper 1 ; Romanova & Tseitlin 1983), who have tried to obtain the nonlinear 
evolution equation, The most advanced of these is Brown et aL’s study (Paper 1)t .  

In Paper 1 an estimate of the Landau constant is made according to which the 
most important contribution is of order O(v-’)  as v G 1, and by means of analytic 
methods it is sho.wn that at Prandtl number 7 = 1 this main contribution vanishes. 
Also, by solving numerically the equations a t  finite Reynolds numbers 
(20 < v - l <  200) and 7 =+ 1 the fact that the Landau constant changes its sign at  
1 not far from unity is verified and the Landau constant is found to be negative 
(stabilization) as 7 < 1 and positive (destabilization) as 1 > 1. 

Unfortunately, the very much restricted character (only 1 = 1) of the analytic 
treatment together with the inconsistent use of the matched-asymptotic-expansions 
method (in Paper 1 only the particular fragments of the solution out of CL region 
are obtained and the inner solution matching to the outer one is not in fact made) 
provide the erroneous estimate (0( v-5)) of the zeroth-harmonic (mean flow distortion) 
contribution to the Landau constant. Thus, Paper I evaluates the contribution of 
the second harmonic only. Our calculations demonstrate that the zeroth-harmonic 
contribution is also O ( v - l )  and is approximately five times as large as the second- 
harmonic contribution. Fortunately, these contributions are both of the same sign 
and, therefore, the results of Paper 1 remain qualitatively valid. In  addition, Paper 1 
contains some more disputable statements, which we shall analyse in $6. 

In this paper we have set ourselves several research and methodological objectives. 
First, we shall develop a consistent procedure for obtaining an analytic solution of the 
problem (or, more exactly, its uniformly valid expansion) outside the CL region ($3) 
as well as inside it ($4) at arbitrary Prandtl numbers by means of the matched- 
asymptotic-expansions method (e.g. Nayfeh 1981). Note that there are difficulties in 
the consistent evaluation of the zeroth harmonic, and in most papers mean flow 
distortion is ignored or is calculated incorrectly. In particular, in the problem under 
consideration, its calculation requires introducing an intermediate region situated 
between the CL and the outer region. The equations there have rather non-trivial 
solutions matching on the one side to an outer (‘non steady’) solution and on the 
other side to the inner (‘dissipative’) solution ($5) .  

Secondly, we shall provide an analysis of the asymptotic properties of the inner 
solution as a function of a complex variable. On this basis the question of an 
indentation rule of the singular point y = yc will be considered in detail (Appendix 

Thirdly, we shall obtain a nonlinear evolution equation that takes correctly into 
account contributions to the Landau constant due to the zeroth harmonic as well tw 
the second one ($$4 and 6). 

Finally, we shall investigate carefully the solution at 7 = 1 when the main 
contribution to the Landau constant vanishes (Appendix B)$. 

The results are formulated and discussed in $6. 

A)* 

2. Formulation of the problem 
Let us consider a shear flow in the gravity field g. The unperturbed velocity in the 

x-direction depends on the vertical coordinate y: u = U,, tanh (y ld) .  The scale of the 
density variation is assumed to be substantially larger than that of the velocity and 

t We are grateful to Professor S. A. Maslowe for sending us a reprint of Paper 1 in response to 
a preprint of this paper of ours. 

3 Appendix B is available from the Journal of FZuid Mechanic8 Editorial Office. 
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we may regard the density p as a linear function of y : p  = p,(O)+ypi(O). This is the 
Drazin (1958) model. Taking (pidl ,  d and d / U o  as the units of density, length and 
time respectively, the initial system of equations in the Boussinesq approximation 
can be written in the dimensionless form : 

a aP 
at ax 
-A$- J -+{A@,  @} = vA2$, 

a 
-P+(P ,  at $1 = K A ~ .  

Here @ is the stream function (u, = a@/ay, uy = -a$/ax), 7 = V / K  is the Prandtl 
number, {a, b} = (aa/ax) (ab/ay)-((aa/ay) (ablaz) ,  and J = d21pi(0)lg/UB,pO(O) is the 
Richardson number. In the inviscid limit, the neutral curve for the model was 
obtained by Drazin (1958): on the ( J ,  k)-plane it is determined by the equation 
J = Ri(k), Ri = k2(1 - k 2 ) ,  where k is the longitudinal wavenumber of the 
perturbation. 

The purpose of the subsequent calculations is to derive the equation for the wave 
having the maximal increment in the linear theory, i.e. the equation in the form 
(Landau & Lifshitz 1953) : 

aA 
- = y,,,A+alA('A. at 

Let us introduce the small parameter 6 characterizing the perturbation amplitude at 
which the linear and nonlinear terms on the right-hand side of (2.3) are of the same 
order of magnitude (if 7 < 1, it is the saturation amplitude). As will be shown, the 
Landau constant a = O ( K - ~ ) ,  hence ymax, AJ = O ( E ~ / K ) .  The range of parameters of 
interest is defined by the inequalities 

€2 
E 2 4 K < p $ d ,  p = ; .  (2.4) 

Guided by this ordering, we introduce the stretched time 7 = put and represent the 
Richardson number as 

Note that for K ,  v 9 0, the neutral curve is displaced (Maslowe & Thompson 1971) 
but this displacement is negligibly small compared with the effects taken into account 
in (2.3). After extracting the perturbed parts of $ and p, we expand them into a 
Fourier series 

(2.6) 

where @-2 = g2, p-l = p l ,  and the overbar denotes the complex conjugate. The $l and 
p2 functions depend on the small parameters e, p and K (only two of these are 
independent) and in calculating them we shall develop appropriate expansions. In 
order to derive the evolution equation (2.3), we need the fundamental (I = & l), the 
second ( I  = f 2 )  and the zeroth (I = 0) harmonics. 

Equations (2.1) and (2.2) involve the small parameter multiplying the higher 
derivative. The intrinsic region of the $2 and p r  fast variations - the critical layer - is 
localized in the Drazin model (and in each flow with an odd velocity profile) at y = 0. 
Depending on the relative role of unsteadiness (@/a t )  A$ - p P $ )  and dissipative 
effects ( V ~ ~ $ - N K ~ - ~ $ ) ,  the uniformly valid approximation of the solution of (2.1) and 
(2.2) is constructed in a different way in various regions of the flow. Initially, we shall 

J = a+,!.&). (2.5) 

W W 

$ = In (coshy)+ E @2(7, y) eikZx, p = po(0)-y+ E pz(7, y) eikl,, 
1 ---00 1 ---00 
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solve the outer problem, i.e. we calculate $l and p l  in the IyI P ( ~ / p ) i  = K / E  region 
where the non-stationarity dominates. Here the obvious boundary conditions are 

$ , + O ,  p,+O asy+fao .  (2.7) 

The functions $l and p l ,  obtained at  y < 0 and y > 0, are to be matched using the 
solutions into the CL (Iyl 5 d) where dissipative effects dominate and in the 
intermediate region where the dissipative and unsteady effects are of equal import- 
ance. Note that the intermediate region plays an important role for the zeroth 
harmonic only, while for the other harmonics it appears to be a trivial transmission 
link between the outer region and the CL. 

3. The outer problem 
Let us consider a wave of sufficiently small amplitude in the neighbourhood of 

the neutral-curve maximum (J  = a, k = k, = 1/42) .  The fundamental harmonic 
dominates in the perturbation and has an amplitude of order E. The second and 
the zeroth harmonics are the result of the self-influence and have an amplitude of 
order e2. 

3.1. The fundamental harmonic 

In order to derive the evolution equation, not only the main term but also the 
following terms of the expansion 

$1 = €$!I) + €jX$p) -k € K $ P )  -k . . . (3.1) 
are needed. Here $f) is the neutral mode of an inviscid linear problem, $i2) takes 
into account the 7-dependence of the solution and is also necessary for the zeroth- 
harmonic evaluation in the outer region. And $.I") is a correction to $?) for dissipative 
effects and is used for the zeroth-harmonic calculation in the intermediate region. 

The function $y) is a solution of the Taylol-Goldstein equation which, in our 
problem, has the form 

where the operator L, is 
Ll$f) = 0, (3.2) 

( Z k o ) 2 - p -  2 a tanh-2 y] . 
cosh2 y (3.3) 

A solution of (3.2) with the boundary conditions (2.7) is 

$d.I" = A * (7 )  $ a W ,  (3.4) 

where 4, = sinhi sech y ( f are related to y 2 0 respectively) ; a relationship 
between A+ and A- will be given by matching to the inner problem (from linear theory 
it is clear that A- = -iA+ ought to be obtained). 

The following terms of expansion (3.1) obey equations of the form 

L1$im) = Q(m), m = 2,3 ,  ..., (3.5) 
which have the solutions 

$im) = rdz[$a(y)$b(r)-$a(z) $b(y)1 &'"'(z)+ (aim)*$~+b!m)*$b)A*, 

where $b is the second solution of (3.2) (that is a linearly independent one with 
4 a ) : $ b  = -#a(y)sy dz$,2 (21, i-e* 

4, = 8da [1 -cosh y-iA(y)], A = In )tanh2h(yl, s = sgn (y). (3.6) 
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Note that $b increases as exp (tlyl) when y+ & 00. Introducing 

flrnYy) = J" dz $&) Q Y z )  

we can represent $im) as 

7 

$im) = $,( y ) dz [ f lm) (  z )  - him) f A * ] $; "2) + aim) * A * $=( y ) . (3.7) 

Here we encounter the so-called modified solvability condition (MSC) (the term 
introduced by Benney & Maslowe 1975). If the operator L, were non-singular at 
y = 0, the necessary and sufficient condition for solvability of (3.5) would be the 
orthogonality of Q(rn) to the eigenfunction of the homogeneous equation : 

I &(")(z) $,(z) dz = 0. 

When y = 0, however, this integral diverges owing to a singularity of L,. The MSC 
is obtained from the boundary conditions (2.7) which require convergence of the 
integral in (3.7) when y+  & 00. This yields 

m 

-m 

Pm)( f CO) = bim)*A*. (3.8) 

The unknown coefficients will be determined from the inner problem. 
For m = 2 , 3  we obtain (u = tanh y) 

+arctan (sinhy) s-+J(l)A*sA(y), 
i aA* u 1 

k, a7 coshy sinhy 

+f arctan (sinh y) 

and, according to (3.8), 

Deriving the evolution equation will require the first (m = 2)  MSC. It can be written 
as 

From the inner problem, we shall find that bi2)++ b@)- = in(J(l)- (alk,) lA12) and shall 
calculate the Landau constant a. Thus, it is the MSC (3 .9)  that yields the evolution 
equation (2.3). 

The second (m = 3) MSC provides the correction for viscosity to the critical 
Richardson number: J,  = +-5v/4k0 (cf. Maslowe & Thompson 1971). It is interesting 
to note that in the Drazin model this correction does not depend on K. As we have 
mentioned above, its evaluation is not necessary in our problem. 

1 
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Let us display the function $iZ)’, pi2) and $i3), pi3) : 

S .  M .  Churilov and I .  G.  Shukhman 

where 

-2 In I sinh yI +;t/i2(y)] $a+ (@)*$a +biz)*&,) A * ,  

$43) i 2 
p\3) = - L + - A *  ( ~ 

u 4k, sinh4y sinh2y 

arctan (sinh z )  
cosh2 z dz. , sinhz 

3.2. The second harmonic 
We only need the main term of the expansion y?2 = ez$i1)+ ..., which obeys the 
equation 

sinhy 8 
(3.10) 

For matching to the inner solution, only the asymptotic expansion of as y+O 
is needed. The main term is easily calculated (see (3.12)) and a more detailed analysis 
of this expansion necessary for the 7 = 1 case is made in Appendix B. 

3.3. The zeroth harmonic 

Here we also need only the main term of the expansion $, = ~ ~ $ 6 ’ )  + . . . but it can 
be determined in the e2p-order only because in e2 the equations for the zeroth 
harmonic reduce to identities (0 = 0). We obtain 

whence, by assuming adiabatic switching on, the mean velocity and density 
perturbations can be expressed as 

IA*I2s. 
cosh y 2 cosh y 

Thus, our construction of the outer solution is completed. For matching, we need the 
asymptotic expansion of an outer solution at  IyI 4 1. Since the intermediate region 
is only essential for the zeroth harmonic, the expansions of the fundamental and the 
second harmonic will be expressed in terms of an inner coordinate Y = ~ - f y .  We 
obtain : 

the fundamental 
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S+ ...; 2 -1- (A*)2 
the second harmonic 

6 Y  
€ K  

the zeroth harmonic 

9 

(3.12) 

(3.13) 

4. The inner solution 

form 
For the inner problem, it is convenient to write the original set of equations in the 

i ap a 
(,a4- Y & V  Y+--= w, = K - t { Y y y ,  ! P ) * + € 2 K - L - -  Yyy-eaK-1J(1)PZ+*.. , a ) 4ax 37 

(4.1) 

(4.2) (W-Y&)P-=&Y= a w, S K - q P ,  !P ) *+E 'K- t -++ . . . .  ap 
a7 

Here ... stands for omitted terms not needed for the subsequent calculations. The 
+b and p are replaced here by Y and P :  

+ = &dP+ Y,  p = p, (O)-dY+K-fP,  

and the following notation is introduced: {a, b}* = a, by - ay b,, 9 = a/a Y. Both the 
inner and the outer solutions are represented as the sum of the harmonics 

CO 00 

Y =  X Yl(7, Y )  eizko*, P = Z P2(7, Y) etzkOx, 

and for each harmonic, expansion will proceed in terms of 6 and K. Comparison with 
(3.1 1 )-( 3.13) indicates that the following terms are needed : 

2 ---co 1 --CQ 

the fundamental 

the second harmonic 

the zeroth harmonic 

Yl = € K ) ~ ~ ) + € ~ K - ~ ~ * ) + ~ K - ~ Y ' ~ ) +  ...; 

Y2 = € * K - t ! q ) + . . . ;  

yo = € ' K - t f l l )  f . . , . 
As before, the superscript indicates the consecutive number of iterations. 

At each of these orders, it is necessary to obtain the general solution of (4.1) and 
(4.2) for each harmonic, to  calculate its asymptotic expansion and to mattoh it to  one 
of the outer solutions (3.11) and (3.12). The pertinent analysis of the asymptotia 
properties of a compound (outer + inner) solution is made in Appendix A. As the last 
step, at O ( $ K - ~ )  of the fundamental the sum biz)++ bi*)- is obtained end is than used 
to derive the evolution equation from (3.9). 

4.1. O ( I Z K ~ )  of the fundamental 
4i 

(4.3) 
k0 

where 9,, = ~~*-ink,(71Y~.++'Yfa2)- (nko)*( PP-t-ta). (4.4) 

s1 Y':) = 0, pit) = - (gW-iko Y )  9W:), 

The sixth-order equation (with J arbitrary instead off but 7 = 1) wm investigafed 
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by Koppel (1964) using the Laplace transform. We shall need the following result 
(for r ]  arbitrary), which can be obtained from the asymptotic properties of (4.3) in 
the complex- Y plane (see Appendix A) : in the -& < arg Y < +z sector (&-region) 
two of the six linearly independent solutions of (4.3), W, and W,, have as I yI -+ co 
the asymptotic representations 

(4.5) 
W,( Y) = Y:( 1 + O( Y-3)), 

Wb( Y )  = 1’4 In (id Y )  ( I  +o( ~ - 3 1 1 ,  

and the remaining four solutions exponentially grow either as Y-+ + 00 or as 
Y -+ - co (we have specially introduced d in W, to simplify the matching to the outer 
solution). Thus we have 

The matching to (3.11) provides A+ = A; A- = -iA. Note that the operators are 
invariant to the replacement Y by - Y with simultaneous complex conjugation. 
Owing to this, w,( - Y) = i W,( Y). 

4.2. O ( E ~ K - ? )  of the second hamnic 

Ye Wt) = W = (g2-2iko Y)W,-~ik,W,, (4.7) 
W, = ik, A2( Wi2- W i  W,)’, W e  = ik, A2(P, Wi-  W,P;).  

The prime denotes the Y-derivative. As the right-hand side of (4.7) is analytic in & 
(see Appendix A), the W;) asymptotic expansion as Y-+ f co is readily determined 
from those of W and is automatically matched to (3.12). We can write 

Note that 
be( - Y )  = - a2( Y ) ,  P2( - Y )  = P2( Y )  

4.3. O ( E ~ K - ~ )  of the zeroth harmonic 
7B4Wt) = iko(A12W( Wiw,-c.c.), 

WP:) = ikolA129(P1 r,-c.c.). I 
Integrating (4.9) we obtain for mean velocity and density perturbations 

(4.9) 

Y 

(4.10) 
ql)’ = AIAlpJ dz[Wi(z) V,(z)-c.c.] = IAI2@,( Y), 

Pt)’ = 41AI2 [ik, Y ( W i  W,-c.c.)-t(Wiv V,+c.c.)] = IAIePo. 
Note that Wt) and Pp) are analytic in the larg yI < +n and - iz c arg Y < -$z 
sectors only. The mean velocity perturbation is an odd real function of Y and has 
the jump through the CL 

1p61)’( + 00) - !q”’( - 00) = 2@,( 00)  1.412. (4.11) 
The asymptotic expansions as Y-+ 

I ik 

t 0 

00 are 

(4.12) ql) = ~ ( 5 + ~ ) s + l A I z @ , ( m ) ~ Y l + . . . ,  Pp) = - 3 1 4 2  4 p  s+ ..., 
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and they do not match to (3.13) immediately. Matching requires evaluating the zeroth 
harmonic in the intermediate region d 4 y Q K / C ,  see 95. 

4.4. O(C~U-:) of the fundamental 

(4.13) 
CIA 
a7 

9, W;) = [(v + 1) g4 - 2ik, Y P ]  W, - . 

By analogy with (4.7), the solution is automatically matched to (3.11). 

4.5. O ( C ~ K - ~ )  of the fundamental 
p1 Wp = w, 

W = (P-ik,  Y)W,-+ik,W, = wNIAl*A+kiJ(l)AW,; 

(4.14) 

41, = lAIzA9 [{@;, Va}* +{ Fa, @,}* + ik,( W: a0- W, @;)I -ik,J(Qql) 

W, = 1 ~ 1 2 ~  [{P*, F,>*+{F,, ~ , ~ * + i ~ , ( P , ~ , - P ,  w,)] = 1 ~ 1 2 ~ 4 1 ~ ~ .  

The right-hand side of (4.14) (or more exactly, the term IA(ZA41N) is non-analytic 
in the lower half-plane (in the -in < arg Y < -in sector); therefore W:) is also 
non-analytic in A and, although the asymptotic representation of W as Y+ & 00, 

s I A I ~ A W , ~  - iko J(')AP,, 

48 N -flAI2A@,(0O) Y-b+ki$l)AYi+O( Y-i), 

allows us to determine the general form of the Ulys) asymptotic expansion 

W:) = -$J (~)AY~ l n Z ( ~ ~ ! Y ) + ~ , ( o o ) J A l z A Y ~ 8  

+[m*+n*  ln(+d Y)]AYf+O(Y+), (4.15) 

the solution of (4.14) along the real axis is required for evaluating m+--m- and 
n+-n-. We emphasize that these quantities are non-zero in general (see Appendix 
A) - 

Matching (4.15) to (3.11) gives biz)+ = -n+, biz)- = n - + i d ' ) ,  whence 

@a)+ 1 + bi2)- = - (n+ - n-) + in$'). (4.16) 

In  order to calculate (n+-n-) we multiply (4.14) by the eigenfunction v of the 
equation conjugate to (4.3) : 

9; v = [ ~ ~ 6 - i k 0 ( ~ ~ 4 + ~ 2 Y ~ 2 ) - k , 8 ( ~ 2 ~ + + ) ]  w = 0, (4.17) 

v -  Y-9 when Y E A ,  

and integrate it for Y between - co and 00 : 

J -W J -03 

On integrating by parts on the left-hand side and using (4.15) and (4.17), we obtain 
03 03 

A(n+-n-) = -k;* dYWv = -kgzIA1zA 1 dY9,w. (4.18) 
J -W J -03 

We have retained in 41 only the 'nonlinear term' since the analytic in A term does 
not contribute to n+-n- (see Appendix A). Using the transformation properties of 
W,, @,, @, and (4.17) it can be easily seen that a,( - Y)@( - Y) = -aN( Y) w( Y), i.e. 
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the real part of the integrand is odd and the imaginary part is even. Substitution 
of (4.16) and (4.18) into the MSC (3.9) provides the evolution equation of the form 

The Landau constank (or more exactly, the main contribution to it) 
0 r m  

(4.19) 

(4.20) 

depends on the Prandtl number and is equal to zero at 7 = 1. Indeed, in this case, 
the Pn operators are factorized, 

Yn = Ni, Nn = B3-ink, Y9+?$nko, 

W, is the solution of the equation N, W, = 0 and the conjugate problem Nr w = 0 
has the solution v = -4Wz. It is easy to see that for O ( d )  of the fundamental and 
for O ( S ~ K - ~ )  of the second and zeroth harmonics, the relations PLm) = -2B!Pnm) is 
valid. Turning to the right-hand side of (4.14) we can see that W I N  = -&95PzN and 
WN = W Z N ,  wherefrom we obtain 

This result is only valid in the limit of high Reynolds numbers (v+O) .  In fact, the 

v0 = 1+dh,+dh,+Kh3+... . (4.21) 

Landau constant is equal to zero at 7 = r ] o ,  where 

In other words, at  r]  = 1 the Landau constant has an expansion 

a = a,K-f+a,K-j+a3+ ... (4.22) 

and is O ( K - ~ )  rather than O(K-,) as in the general case. The numerical values of 
h, and at depend on the original flow model. In particular, for the Drazin model 
h, = 0.47, a, = -0.054 while in the Holmboe model (see Gossard & Hooke 1975), 
h, = 2.28, a, = -0.26. In more details the case of Prandtl number being unity is 
considered in Appendix B. 

It is convenient to separate the contributions to the Landau constant a due to 
the second and zeroth harmonics (see (4.14)) 

(4.23) 

Note that at 7 = 1 both contributions to (4.23) go to zero. 
Evaluating the Landau constant at 7 4 1 requires a numerical procedure. The 

integration of (4.3), (4.7), (4.10) and (4.17) which determine the fundamental, the 
second and the zeroth harmonics and a solution of the conjugate problem respectively 
is accomplished at 0 < Y < 00 (or more exactly, at 0 < Y < Ymax, Y,,, B 1) by the 
Runge-Kutta procedure. The non-triviality of the numerical procedure (let us follow 
it for the example of a W, calculation) is due to the fact that the asymptotic values 
of the function and its five derivatives are set at  Y = Y,,, as boundary conditions. 
In  such a formulation of the Cauchy problem, the eigenfunctions of the homogeneous 
equation that are exponentially small as Y+ + 00 (see Appendix A) will enter into 
the solution with uncontrollable weight and this will substantially distort the solution 
at finite Y. Therefore, we have used the fact that on the Stokes line arg Y = -?gc the 
exponential terms mentioned above are comparable with (4.5) and they can be 

a = a(z) + ~ ( 0 ) .  
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FIGURE 2. Functions of the inner problem: (a) tha hndamental harmonic; (b) the second harmonic; 
(c) solution of the conjugate problem (4.17); (d) the zeroth harmonic. 

separated from W,. By setting the asymptotic values of W, and its five derivatives 
at arg Y = -in, I yI = Y, $ 1 as initial values, we can integrate (4.3) along this ray 
up to Y = 0 and thus obtain the initial conditions for further integration of this 
equation along the positive- Y axis. The non-homogeneous equation for 9, and the 
conjugate equation (4.17) are solved in a similar way and the zeroth harmonic is 
determined from (4.10) by direct integration. The results are shown in figure 2 for 
Prandtl number 7 = 2 (here and in figure 4 Y* = 4 Y ) .  

5. The intermediate region 
As mentioned in §§2 and 4, the non-stationarity and viscosity are of the same order 

of magnitude at Iyl - K/E. Introducing 2 = ~/(K/E); we can write the initial equations 
(2.1) and (2.2) in the form 
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[a, b] = ax bz-a, b,. and 

The asymptotic expansions of the outer and inner solutions dictate the following 
expansions in the intermediate region : 

the fundamental 
= €: &F) + &K-!$P) + (&-:$?) +. , . ; 

the second harmonic 

the zeroth harmonic 

$hz = g3K-'4L')+ . . . ; 

$o = €Ki $6') + E3K-'$i2) + . . . . 
It is easy to see that a t  these orders the solutions of (5.1) and (5.2) for the 

fundamental and the second harmonics are the trivial continuation of the outer- 
solution asymptotic expansions (3.1 1 )  and (3.12) through the intermediate region. 
This is not the case for the zeroth harmonic, for which the left-hand sides of (5.1) 
and (5.2) are equal to zero and the main linear term is O(s3tc2) on the right-hand 
sides of each equation. 

5.1. The O ( d )  problem 
The evolution of the mean velocity and density perturbation is described in the 
intermediate region by diffusion equations : 

The boundary conditions follow from (3.13) and (4.12) : 

&+O, ut)+O as Z+oo ; ~ ~ ~ + ~ A ( T ) ~ ~ ! D ~ ( O O ) ,  c$)--+O as Z+O. 

Thus the question of evaluating the mean velocity perturbation in the intermediate 
region is reduced to a simple task concerning the temperature profile in half-space, 
with the boundary temperature being a known function of time. The mean density 
distribution in this order is absent however (ui') = 0). 

5.2. O ( ~ K - ' )  problem 

Although it is difficult to solve (5.4), the asymptotic behaviour is readily evaluated. 
The first terms on the right-hand sides of (5.4) are the most important ones as 121 >> 1 
but as 121 < 1 the second terms are the most important. Consequently, 

Thus, the solution in the intermediate region provides the matching to both the outer 
and the inner solutions for the zeroth harmonic. 

Note that in Paper 1 the zeroth harmonic is evaluated at q = 1 and A J  = O(h), 
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i.e. on the boundary between the viscous and unsteady CL. In this case the non- 
stationary and the dissipative terms are already of the same order in the CL region 
and the intermediate region cannot be introduced. However, for matching to the 
outer region the asymptotic expansion of the inner solution as Y + 00 is taken in 
Paper 1 at fixed ly1/d (see (4.19) of Paper 1) rather than at fixed 7 ((4.15), Paper 1)  
as should be done. This provides an erroneous estimate (O(e2v-f))  of the zeroth- 
harmonic order in the outer region. The inner-solution matching to the outer one was 
not in fact made for the zeroth harmonic since the outer solution for it was not 
obtained . 

But this result alone does not yield the incorrect estimate of a(,). The reason for 
the error is the attempt to evaluate a(,) from the outer solution. From the analysis 
presented in f 4 it is clear that a(,) is completely determined by the inner region (CL) 
and is O(v- l )  as 7 + 1 apart from the order of the zeroth harmonic in the outer region. 

6. Discussion 
The evolution equation obtained for a specific shear-flow model (92) is, in fact, 

largely a universal one. This statement is based on two facts. First, according to the 
Miles theorem (Miles 1961), the critical Richardson number is equal to a. Accordingly, 
for a sufficiently wide class of shear flows with an inflexion point in the velocity profile, 
the neutral curve J = Ri(k) near its maximum, k = k,, is approximately described 
by the formula 

Ri(k) x +-/9(k-k0)', /3 > 0. (6.1) 

In particular, in the Drazin model we have adopted, Ri(k) = k2(l - k2) and /9 = 2, 
while in the often used Holmboe model Ri(k) = k(1 -k), /9 = 1. Secondly, the 
nonlinear term is entirely determined by the inner solution, i.e. it does not depend 
on the flow configuration as a whole. Thus, the Landau constant (4.20) can be 
expressed with the help of a universal function a,(q) : 

(which, by analogy with (4.23), can also be separated into contributions of the second 
and zeroth harmonics a,(7) = ac)(q) +ap)(q)) .  

Using (6.1), it  is easy to generalize the evolution equation to the case when the 
z-modulation of amplitude is present. Returning in (4.19) to the original variables, 
taking into account (6.1) and (6.2) and introducing the modulation, we get ( A  = €A)  

Here the original flow only determines the wavenumber of the most-unstable mode 
k, and the positive coefficients a and 8. In  the Drazin model, k, = 1/.\/2, a = 1, and 
/9 = 2, while in the Holmboe model k, = t,  a = t ,  and /I = 1. 

The evaluation of the integral in (4.20) in the interval < q < 8 has shown that 
both contributions to the Landau constant have the same sign but a$" is larger than 
ah2) by a factor of approximately 5, i.e. the nonlinear terms in (6.3) are determined 
mainly by the interaction of the fundamental with the mean velocity and density 
distortions (the zeroth harmonic). I(2) = ( l - q ) ~ $ ~ ) ( v )  and I(,) = (l-q)ah0)(q) are 
plotted in figure 3. 

When the Prandtl number 7 < 1, nonlinearity limits the instability at the level 
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FIGURE 3. Evaluation of the integral in (4.20): Z(2) = ( l -y)a%(y);  I@)  = (l-g)a$O)(~).  
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FIGURE 4. Perturbations of the mean flow parameters at different values of the Prandtl number: 
g = 0.5; g = 2 inside the CL. (a ,  b )  Perturbation of the gradients of mean velocity u‘ and density 
p’ ;  ( E ,  d)  variation in Richardson number (in units E ~ / K ) .  

2, - [ (a-J)  ~/(1--)7)]:. If r] > 1, nonlinearity plays a destabilizing role and the 
exponential growth of amplitude at  2 - 2, is replaced by power-law growth, 
according to the law 2 - (to--)* which describes the so-called ‘burst) instability 
and will be valid unless at A - v; the CL becomes nonlinear. 

One can give the following interpretation to the change in nonlinear stability. 
According to the Le Chatelier principle, the mean velocity and density (figure 4) are 
perturbed so as to decrease the velocity and density gradients of the original flow, 
i.e. 6u‘ < 0, Sp’ > 0. The variation of Richardson number which governs the flow 
stability, 

is determined by competition between 6u’ and 6p’. If thermoconductivity exceeds the 
viscosity (7 < l) ,  the density perturbation diffuses more intensively than the velocity 
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perturbation does, so that 6p’ is small and 6J > 0, which means stabilization, but 
if, on the contrary, the viscosity dominates ( r ]  = l),  the velocity perburbation diffuses 
faster, so that SJ < 0 (destabilization). Consequently, at some r ]  = r],, the Landau 
constant must vanish. In  the high-Reynolds-number limit 7, = 1 (see (4.21)). 

In  $5 1 and 5 we have already discussed the results of Paper 1. We believe that this 
paper contains the right estimate (O(v - I ) )  of the second harmonic contribution a@) 
to the Landau constant and demonstrates that the Landau constant changes sign 
at r]  = r ] ,  x 1. This conclusion is verified by means of a numerical solution of (2.1) 
and (2.2) at relatively low Reynolds numbers (v-l < 200) and at Prandtl numbers 
near unity (0.7 < r]  < 1.3). 

The error in Paper 1 in estimating the zeroth-harmonic contribution has been 
discussed above. Paper 1 also contains an incorrect estimate of the Landau constant 
(O(v- i ) )  as r]  = 1. The reason for this error is again that the outer solution (for the 
second harmonic in this case) has not been obtained and this leads to the omission 
of some terms in the inner solution (see Appendix B). The correct result is a, = O(v-4) 
(see (4.22)). Nevertheless this fact does not change the form of the evolution equation 
at r ]  = 1 (see (1.6) and (7.5) of Paper 1) because the nonlinear term of the fifth order 
(a41A14A, u4 = O(v-,)) dominates as A J  > Y. 

The affirmation contained in Paper 1 that the Landau constant at r]  = 1 tends 
to zero as v+O is also questionable. It seems to us that this conclusion is based on 
the fact that the point where the a(r])-graph crosses the r]-axis tends to r]  = 1 as v+O 
and that at v-l = 200 la(1)l is less than its value at v - l =  100 (see figure 2(a, b)  of 
Paper 1); this is evidently due to the relatively low values of the Reynolds number. 
We believe that, as v+O, the Prandtl number q0 at which a(r]) vanishes tends to unity 
(see (4.21)): q O - l  = O(vi)  but at the same time the slope of the graph increases: 
aa/aq = O(v- l )  and these result in the Landau constant increasing: a(1) = O ( v - f ) .  

Another point concerning the nonlinear evolution in the viscous CL regime is that 
for a correct formulation of the problem, the linear time of growth yL1, and the 
nonlinear time (A2a)-’, equal to it in the catx of interest, must be less than the time 
for the original flow to spread due to viscosity v-l: yL - aAz % v or a % (v/a):. On 
the other hand, the viscous CL regime is realized when the amplitude is not too large : 
A < v l / @ P ) .  In our case, a - v-l and p = $; therefore these conditions are compatible 
in the region of the parameters A J  > v, v < A < d (see figure 1). In  an analogous 
problem for a uniform flow, these conditions cannot be compatible: for such a flow 
Schade (1964) has obtained a = O ( l ) ,  p = 4 which leads to discrepant inequalities: 
A % v4 and A + VJ”. To avoid the discrepancy, one has to introduce an artificial force 
field (Huerre 1980) to maintain the original flow. With this formulation of the 
problem, our correct account of the zeroth harmonic gives a = O(v-!) but not O( 1) 
as in the papers cited. Let us emphasize that for a stratified flow the nonlinearity 
is stronger and there is no need to introduce the forces. The above nonlinear theory 
is restricted to small enough amplitudes ( A  4 h) and supercriticalities ( A J  < v81) and, 
therefore, as the next step it is interesting to trace the evolution in the nonlinear and 
unsteady CL regimes (regions I1 and I11 of the parameters in figure 1). This issue 
is insufficiently studied not only for stratified flow but also for other flows. We want 
to draw the readers’ attention to the excellent paper by Reutov (1982) who has 
investigated for a plane Poisseuille flow the transition from viscous to nonlinear CL 
regime. 
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in preparing the English version of the manuscript and for typing the text. 

Appendix A. Why does the indentation rule not work in the nonlinear 
theory? 

Extension into a complex plane is one of the powerful tools of analysis and has 
wide application in seeking the solutions of differential equations, evaluating the 
integrals, and in other tasks. But its correct use requires investigating the analytic 
properties of the functions used. 

The set of equations (2.1), (2.2) on a complex-y plane has no singularities in the 
circle IyI < 1 ; consequently, its true solution is analytic in this area. But a compound 
solution (outer+inner) approximating it does not possess this property. Let us 
consider in more detail the question of the analytic properties of a compound solution 
because we use it in all calculations. 

The algorithms for constructing the outer and inner solutions are, in fact, identical 
and represent step-by-step iterative calculations of the functions #t )  which are the 
solutions of equations 

In the outer problem, the role of operator Y is played by the TayloAoldstein 
operator but, in the inner problem, by the operator 

(A 1) Y#‘, = ace. 

(A 2) 
a 

= r 9 6 - i ( r 2 9 4 + ~ 2 z ~ 2 ) - 2 2 ~ 2 - : ,  9 = - az ’ 
to which, using the replacement 2 = (nk,)tY, all operators Yn at n =I= 0 may be 
reduced. The right-hand sides are constructed from preceding iterations (qW, m < i )  
but the first iteration is the solution of the homogeneous equation 

Y p  = 0. (A 3) 
Therefore, the analytic properties of q5(t) are determined by those of the operator Y 
and by preceding iterations, i.e. finally, by the properties of problem (A 3). 

The Taylol-Goldstein operator has singular point y = 0, which is the branching 
point for solutions of (A 3). The asymptotic behaviouw of these solutions as y++O 
are 

#a - $ti - -Yi ln (by,. (A 4) 

Operator (A 2) has no singular points, and therefore the solutions of (A 3) in the 
inner region are holomorphic functions. Two of them as Z+OO are of the ‘power’ 
type and four solutions (dj3, ..., 06) are of ‘WKB’ type. If 7 += 1 

G1 - 24, - -2: In (+,TI, @3,4  - Z-t efSi(Z), 

Each particular solution of ( A 3 )  is a superposition of Gn, and its asymptotic 
representation changes when we pass the Stokes lines (see, for example, Fedoryuk 
1983) Re S,  = Re S,  = 0 on which the asymptotic values of all an are ‘equal-valued ’, 
i.e. they increase or decrease not faster than some power of 2. Operator (A 2) has 
three Stokes lines: argZ = -in, arg2  = -in, and arg2  =in. 

If we take on the Stokes line solution having a ‘pure’ asymptotic behaviour, say, 
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GI, then as we move away from the Stokes line, the exponentially small terms will 
add to it and after passing through the next Stokes line these terms will become 
exponentially growing. 

Thus, the asymptotic representation may remain unchanged only in the region that 
contains no more than one Stokes line. On this basis, one can construct uniquely the 
solutions, which have as Z+ 00 asymptotic behaviour of the kind (A 4) at both ends 
of the real axis. Let @a and @b on the Stokes line argZ = -in as Z+ 00 have 
asymptotic representations 

@a = Zi (1 +0(2-3)), @b = -Zi In (iZ) (1 +0(2-~)); (A 6) 

then they will have the same representations (plus exponentially small additions 
composed of G3, ..., @6 in sector -in < argZ < in (d region)). In  the remaining 
sector in < arg Z < in @a and @b are exponentially increasing. 

By analytically continuing $ha and $hb from the positive semiaxis to d, we see that 
asymptotic expansions of $ha and @a, $hb and @b are matched everywhere in d and 
the compound function obtained provides a uniformly valid approximation of the 
fundamental harmonic of a true solution in sector 

Now let @ be a certain term of an inner-solution expansion. The function @ can 
be matched to its respective fragment $h of the outer solution only in that sector dl 
of the complex plane where the outer asymptotic representation of @ is a power law 
since the outer solution has only such a behaviour (see (3.11)-(3.13)). In other words, 
the compound function in this sector serves as a uniformly valid term of the true 
solution. We shall refer to region d as the compound’s analyticity region or, more 
often, as the analyticity region of its inner component. In  the same sense, this term 
is used in the main text. Thus, and ab are analytic in A. Let us stress that it 
is impossible to construct the solution of (A 3) that is analytic in the upper half-plane 
as it contains two Stokes lines, and growing exponential terms will inevitably arise 
in the inner-solution’s asymptotic expansion. 

Returning to the generalized equation (A l), one may formulate the main result 
as follows: the solution $h($) is analytic in the region Jv, if (a) is analytic in JV, 
(b) Jv contains not more than one Stokes line of the operator 9. 

of the circle Iyl < 1. 

Consider now the sequence of analytic properties of the (A 3) problem. 
(i) One may displace the integration contour into the lower half-plane of complex-y 

only when the integrand is analytic in d. Particularly, in the linearized problem, 
the @) are linear functions of $(l) and of its derivatives, i.e. they are analytic in A ; 
consequently, all $h(t) are analytic in A. Hence, both aspects of Lin’s indentation rule 
from below follow from this (see Q 1). Thus, the linear part of the evolution equation 
may be obtained by the usual method of indenting the contour below the singular 
point. 

(ii) The main point of the inner problem is to determine the asymptotic behaviour 
of the solution !Pi) of (A 1)-type equations. The general form of !Pi) asymptotic 
expansions can be determined on the basis of the right-hand side asymptotic 
representations W(‘)* : 

!Pi) - f f + ( m * + n *  IniZ)Zi(i+O(z-3)). 

Thef* are fully reconstructed by means of * but mf and n f  remain undetermined 
since the solution of (A 1) is defined up to the general solution of the homogeneous 
equation. If the right-hand side of (A 1) is analytic in the lower half-plane, as in the 
case with (4.7) and (4.13), a solution exists that is analytic in d (the Stokes-lines 
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configuration is such that the analyticity in the lower half-plane means analyticity 
in A). This solution has a uniform asymptotic representation in A; consequently, 
the m and n coefficients are constant in A, i.e. m+ = m- and n+ = n-. 

(iii) In nonlinear problems, the right-hand side of (A i),  @), contains, together 
with W,, Wb and their derivatives which are analytic in A, plus the complex- 
conjugate functions wa and w b  which are non-analytic in the -$ < arg Y < -in 
sector (e.g. the IAI2AWN term on the right-hand side of (4.14)). In  this case, evaluating 
the !€$) asymptotic expansions requires integrating the appropriate equation along 
the real axis (or along any other curve which lies entirely in the branch of analyticity, 
i.e. in the larg YI < in and -in < Y < -$c sectors, and connects + co and - 00) and, 
in general, m+ $: m-, n+ $: n- as in (4.15). 

We should emphasize that in nonlinear problems the integrands (in solvability 
conditions) inevitably contain va together with W, and are non-analytic in the lower 
half-plane. Therefore, the ‘indentation ’ rule is invalid for nonlinear problems. 
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